Detailed consideration of physicochemical properties of CO3apatites as biomaterials in relation to carbonate content using ICP, X-ray diffraction, FT-IR, SEM, and HR-TEM.

نویسندگان

  • Rie Yokota
  • Hidetaka Hayashi
  • Isao Hirata
  • Yasuo Miake
  • Takaaki Yanagisawa
  • Masayuki Okazaki
چکیده

CO3apatites with different carbonate contents were synthesized at 60 +/- 1 degrees C and pH 7.4 +/- 0.2 under different carbonate concentrations (0-0.3 mol/L) in the supplied solutions. Their physicochemical properties were analyzed using various methods. Inductively coupled plasma gave accurate chemical analysis data for calcium and phosphate contents. X-ray diffraction analysis showed a clear chemical shift at high carbonate content. A CO3(2-) absorption peak area approximately proportional to carbonate content was observed through Fourier transmission infrared spectroscopy. Scanning electron microscopy and high-resolution transmission electron microscopy revealed a dramatic change of the crystal shape. Osteoblast proliferation at the surface of each CO3apatite-collagen sponge indicated that osteoblasts deformed to expand and cover the surface of the sponge, and appeared to adhere well to the sponge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

Characterization and synthesis of hardystonite (HT) as a novel nanobioceramic powder

Objective(s): Hardystonite (HT) has been successfully prepared by a modified sol-gel method. We hypothesized thatnano-sized (HT) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size (HT).Materials and Methods: The hardystonite nanopowder was prepared via a modified sol-gel method.Optimi...

متن کامل

Synthesis and characterization of Ag doped Cobalt Ferrite nanocomposite

Nanomaterials are attracted a great deal of attention from scientific community due to its unique properties and applications. The small size ferrites have opened the door for intensive research to utilize their properties for biomedical applications. Cobalt ferrite nanomaterials and its silver doped (Ag-doped) nanocomposites have been prepared using solid state combustion method. This combusti...

متن کامل

Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs) with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs). Then, Schiff base condensation  of AmpSCMNPs with acet...

متن کامل

Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application

Objective(s): Hardystonite (HT) is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dental materials journal

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2006